Answer:
  F = 2,8289 i ^ + 1,0909 j ^) 10⁻² N
 F = 3.0226 10⁻² N
,  θ  = 21.16º
Explanation:
For this exercise we use Coulomb's law
          F = k q₁q₂ / r₁₂²
We also use that the force is a vector magnitude, so we must calculate each component of the force
, see the adjoint for the direction of the vectors
X axis
           Fₓ = -F₁₄ + F₁₃ₓ
          
Y axis
         [tex]F_{y}[/tex] = F₁₂ -F_{13y}
let's look for the expression for each force
where the side of the square is a = 1.25 m
   F₁₂ = k Q₁Q₂ / a²
   F₁₄ = k Q₁Q₄ / a²
the distance between 1 and 3 is
          d = √(a² + a²) = a √2
    F₁₃ = k Q₁Q₃ / d²
let's use trigonometry to find the components
               cos 45 = F₁₃ₓ / F₁₃
               F₁₃ₓ = F₁₃ cos 45
               F₁₃ₓ = k Q₁Q₃ / 2a²
               sin 45 = F_{13y} / F₁₃
               F_{13y} = F₁₃ sin 45
               F_{13y} = k Q₁Q₃ / 2a²  sin 45
  
Taking all terms, we substitute in the force for each axis
X axis
           Fₓ = - k Q₁Q₄ / a² + k Q₁Q₃ / 2a₂ cos 45
           Fₓ = k Q₁ / a² ( -Q₄ + Q₃ /2   cos 45)
           Fₓ = 9 10⁹ 1.5 10⁻⁶ / 1.25²   (- 4.5 10⁻⁶ + 3.5/2  cos 45  10⁻⁶)
           Fₓ = 8.64 10³ (3.2626 10⁻⁶)
           Fₓ = 2.8189 10⁻² N
Y axis
           F_{y} = k Q₁Q₂ / a² - k Q₁Q₃ /2a²   sin 45
           F_{y} = k Q₁ / a² (Q₂ - Q₃ /2 sin45)      
           F_{y} = 9 10⁹ 1.5 10⁻⁶/ 1.25²    (2.5 10⁻⁶ - 3.5/2   sin 45  10⁻⁶)
           F_{y} = 8.64 10³ (1.26256 10⁻⁶)
           F_{y} = 1.0909 10⁻² N
The result can be given in two ways
1) F = Fₓ i ^ + F_{y} j ^
      F = 2,8289 i ^ + 1,0909 j ^) 10⁻² N
2) in the form of a module and an angle, for which we use the Pythagorean theorem and trigonometry
        F = √ (Fₓ² + F_{y}²)
        F = 10⁻² √ (2,8189² + 1,0909²)
        F = 3.0226 10⁻² N
    
        tan θ = F_{y} / Fx
        θ = tan⁻¹ (F_{y} / Fₓ)
        θ = tan⁻¹ (1.0909 / 2.8189)
         θ  = 21.16º