Answer:  x = 7 ;  y = 4 .
______________________________________
sin 30 / (5y - 4) = sin 30 / (y + 12) ;
(sin 60) / (5y - 4) = (sin 60) / (3x - 5) ;
5y - 4 = 3x - 5 ; 
5y - 4 = 3x - 5  = y + 12 ;
_____________________
5y - 4 = y + 12 ; solve for "y" ;
Add "4" to each side of the equation; & Subtract "5y" from each side of the equation:
_____________________
          5y - 4 + 4 - 5y = y + 12 + 4 - 5y ;
to get:   0 = -4y + 16 ;
    
          ↔  -4y + 16 = 0 ;
Subtract "16" from each side of the equation:
_______________________________
            -4y + 16 - 16 = 0 - 16 ;
  to get:  -4y = -16 ;
Now, divide EACH SIDE of the equation by "-4" ; to isolate "y" on each side of the equation; and to solve for "y" :
-4y / -4 = -16 / -4 ; 
to get:  " y = 4 " ,
________________
Now, to solve for "x" :
______________________
 Since:
 ______________________________ 
 5y - 4 = 3x - 5 ; 
_______________________________
Substitute "4" for "y" (in the equation); and solve for "x" ;
__________________________________________
(5*4) - 4 = 3x - 5 ;
20 - 4 = 3x - 5 ;
16 = 3x - 5 ;
↔ 3x - 5 = 16 ;
Add "5" to each side of the equation;
   3x - 5 + 5 = 16 + 5 ;
   3x = 21 ;
Now divide EACH SIDE of the equation by "3" ; to isolate "x" on ONE SIDE of the equation; and to solve for "x" ; 
    3x / 3 = 21 / 3 ;
      x = 7 ; 
____________________________________
Let us check our work:
___________________________________
 Given the equation: 
___________________________________
"  5y - 4 = 3x - 5 " ;
→ Does the equation hold true when "x = 7" and "y = 4" ?
__________________________________
→ On the "left-hand side" of the equation:
"5y - 4" = 5(4) - 4 = 20 - 4 = 16 .
_____________________
On the "right-hand side" of the equation:
___________________________
 3x - 5 = 3(7) - 5 = 21 - 5 = 16 .
Does "16 = 16" ?  Yes! .
___________________
Also, note:  "5y - 4 = 3x - 5  = y + 12 ".  
________________________________
Does: "y + 12 = 16" ;  when "y = 4" ?
____________________________
  →  y + 12 = 4 + 12  = 16.  Yes!
_____________________________________
Our values:  x = 7 , y = 4 .
_______________________________________