[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\
% left side templates
\begin{array}{llll}
f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}
\end{array}\\\\
--------------------[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\
\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}\\
\left. \qquad   \right.  \textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{  B}}\textit{ is negative}\\
\left. \qquad   \right.  \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\
\left. \qquad  \right. if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\
\left. \qquad  \right.  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{ vertical shift by }{{  D}}\\
\left. \qquad  \right. if\ {{  D}}\textit{ is negative, downwards}\\\\
\left. \qquad  \right. if\ {{  D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{  B}}}[/tex]
with that template in mind.
[tex]\bf f(x)=\sqrt[3]{x}\qquad \boxed{-f(x+2)+4}\implies f(x)=\stackrel{A}{-1}\sqrt[3]{\stackrel{B}{1}x\stackrel{C}{+2}}\stackrel{D}{+4}\qquad 
\\\\\\
f(x)=-\sqrt[3]{x+2}+4[/tex]
A  = -1, reflected over the x-axis
B = 1, C = 2,  horizontal shift of C/B or 2, to the left.
D = 4, shifted upwards by 4 units.
check the picture below.