The law of Cosines states as follows:
[tex] {c}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \cos(C) [/tex]
where a is the side opposite angle A, b is the side opposite angle B, and c is the side opposite angle C
for problem 1), we can switch it to:
[tex] {a}^{2}  =  {b}^{2}  +  {c}^{2}  - 2bc \cos(A)  \\ {a}^{2} = {(23)}^{2} +  {(28.5)}^{2}  \\ - 2(23)(28.5) \cos(87) \\  {a}^{2}  = 1341.25 - (1311)(.052) [/tex]
[tex] {a}^{2} = 1341.25 - 68.61 = 1272.64 \\ a =  \sqrt{1272.64}  = 35.67[/tex]
Now you can use the law of sines for a 2nd angle:
[tex] \frac{b}{ \sin(B) }  =  \frac{a}{ \sin(A) }  \\  \sin(B)  =  \frac{b\sin(A)}{a} =  \frac{23\sin(87)}{35.67} \\ B = {sin}^{ - 1} ( \frac{22.97}{35.67} ) = 40.08[/tex]
and for the 3rd just use the 180-triangle rule:
C = 180 - 40.08 - 87 = 52.92
Now for problem 2)
again, the Law of Cosines, but now we'll switch it to solve for C:
[tex] {c}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \cos(C)  \\  \cos(C) = ( {c}^{2}  -  {b}^{2} -  {a}^{2}) \div  - 2ab \\  = ( {19.9}^{2}  -  {16.7}^{2}  -  {23.5}^{2}) \div  - 784.9 \\ C =   {\cos}^{ - 1} ( \frac{-435.13}{-784.9}) = 56.33[/tex]
Now for a 2nd angle use the Law of Sines:
[tex] \frac{c}{ \sin(C) }  =  \frac{a}{ \sin(A) } \\  \frac{19.9}{ \sin(56.33) }  =  \frac{23.5}{ \sin(A) } \\  \sin(A)  = 23.5 \sin(56.33)  \div 19.9 [/tex]
[tex]A =  {sin}^{ - 1} ( \frac{19.56}{19.9} ) = 79.36[/tex]
finally, use the 180-triangle rule to find B:
B = 180 - 79.36 - 56.33 = 44.31