The answer is:  " x = 5, and -1 " .
_______________________________________________
Explanation:
_______________________________________________
Given:
_______________________________________________
  (x − 2)  =  √(2x + 1)  ;
→ "Square" each side of the equation; that is, raised EACH SIDE of the equation to the power of "2" ; to get rid of the "radical" ;  as follows:
_______________________________________________
  [(x - 2)]²   =  [ √(2x + 1) ] ² ;
to get:
→ (x - 2)² = (2x - 1) ; 
Expand the " (x - 2)² " ; 
→ (x - 2)(x -2) = ?
NOTE: (a + b)(c + d) = ac + ad + bd .
→    =  (x * x) + (x * -2) + (-2 * x) + (-2 * -2) ; 
        =  (x²)  + (-2x) + (-2x) + (4) ; 
        =   x²  − 2x − 2x + 4 ; 
        =   x² − 4x + 4 ; 
______________________________________________
Now, rewrite the entire question:
 →  (x − 2)²  =  (2x − 1) ; 
 →  as follows:
______________________________________________
→   " x² − 4x + 4   =  2x − 1  " ; 
Now, subtract "2x" from each side of the equation; 
         & add "1" to each side of the equation:
 
→   " x² − 4x + 4  − 2x + 1  =  2x − 1 − 2x + 1  " ; 
to get:
→   " x² − 6x + 5  = 0 " ;  Solve for "x" ; 
Let us if :  " x² − 6x + 5 " can be factors:
_____________________________________
What factors of "positive 5" ; add up to "-6" ; 
     -5 ,-1 ;  → -5 + (-1) = - 6; YES. 
     5,  1 ; → 5 + 1 = 6 ;  NO.
 _____________________________________
 
So, we have:  " (x − 5) (x − 1) = 0 " . 
x = 5, and -1 .
_________________________________________