Hey
[tex] log_{2}(2 {x}^{3}  - 8)  - 2 log_{2}(x)  =  log_{2}(x) [/tex]
Transposing log x to other side :
[tex] =  >  log_{2}(2 {x}^{3}  - 8)  =  log_{2}(x)  + 2 log_{2}(x) [/tex]
Using Logarithmic Property :
[tex] =  >  log_{2}(2 {x}^{3}  - 8)  =  log_{2}( {x}^{3}  ) [/tex]
Raising to the power 2 :
[tex] {x}^{3}  - 8 = 0[/tex]
[tex] =  > (x - 2)( {x}^{2}  + 2x + 4) = 0[/tex]
[tex] =  > x = 2[/tex]
Hence, [ x = 2 ] is the only real solution !