since there are 3 lines (triangle), perimeter is simply the sum of those sides
find each side using distance (d) formula:
[tex](d) =  \sqrt{( {(x2 - x1)}^{2} +  {(y2 - y1)}^{2}  )} [/tex]
where two points of the line lie at (x1, y1) and (x2, y2)
let's name the points of our triangle to make it easier: A = (8, 2), B = (8, 6), C = (6, 6)
[tex]d(ab) =  \sqrt{( {(8 - 8)}^{2} +  {(6 - 2)}^{2}  )}  \\  =  \sqrt{ {4}^{2} }  = 4[/tex]
[tex]d(bc) =  \sqrt{( {(6 - 8)}^{2} +  {(6 - 6)}^{2})} \\  =  \sqrt{{2}^{2} }  = 2[/tex]
[tex]d(ac) =  \sqrt{( {(6 - 8)}^{2} +  {(6 - 2)}^{2}  )} \\  =  \sqrt{( {2}^{2} +  {4}^{2}) }  =  \sqrt{(4 + 16)}  \\  =  \sqrt{20}  = 2 \sqrt{5}  = 4.47[/tex]
So now for P add AB + BC + AC = 4+2+4.47
P = 10.47 units squared